As ubiquitous computing dramatically changes the way people think, work, and interact, it has become more convenient for individual users to proactively generate, share, and exchange digital contents through online social media, such as online social networks (e.g., Facebook and Twitter), review/rating websites (e.g., Amazon and Yelp rating systems), online crowd sourcing platforms (e.g. Amazon Mechanical Turk), and knowledge gathering and sharing platforms (e.g., Stack Overflow and Wikipedia). These user generated contents (UGC), which take various format as digital video, blogging, forums, online social conversations, mobile phone photography, and so on, have experienced exponential increase recently and become an essential source of Big Data. However, profit-driven attacks are emerging rapidly, raising great challenges for data security, privacy, and trust. On one hand, malicious attackers can easily manipulate such contents to conduct unethical promotions, to spread rumors, and to mislead public’s decision makings. On the other hand, people carelessly posting their personal information on social media can easily have their privacy breached. In particular, the sheer amount and diverse format of user generated contents have led to emerging security and privacy issues that cannot be resolved by current defense solutions. Traditional security mechanisms and models, which are tailored to securing small-scale or isomorphic data, are inadequate to solve this challenge in Big Data era due to limited bandwidth, storage, and computation power, and so forth. Therefore, how to develop new lightweight cryptographic algorithms/protocols, data mining/organization/optimization models, and performance evaluation methods, to solve the big security challenges, becomes crucial for the success of Big Data. The purpose of this special issue is to publish high-quality research papers as well as review articles covering the most recent research results that address the mathematical model and algorithms on security, privacy, and trust challenges in Big Data era. Original, high quality contributions that are not yet published or that are not currently under review by other journals or peer-reviewed conferences are sought. Potential topics include but are not limited to the following:
Authors can submit their manuscripts through the Manuscript Tracking System athttp://mts.hindawi.com/submit/journals/mpe/spps/.
Please check more details at https://www.hindawi.com/journals/mpe/si/307052/cfp/ Lead Guest Editor
Guest Editors
|
Blog >